高中數學知識點總結

時間:2025-03-15 10:43:54 知識點總結 我要投稿

高中數學知識點總結(通用15篇)

  總結是對某一特定時間段內的學習和工作生活等表現情況加以回顧和分析的一種書面材料,通過它可以正確認識以往學習和工作中的優缺點,不如靜下心來好好寫寫總結吧。那么我們該怎么去寫總結呢?下面是小編整理的高中數學知識點總結,僅供參考,歡迎大家閱讀。

高中數學知識點總結(通用15篇)

  高中數學知識點總結 1

  一、求導數的方法

  (1)基本求導公式

  (2)導數的四則運算

  (3)復合函數的導數

  設在點x處可導,y=在點處可導,則復合函數在點x處可導,且即

  二、關于極限

  1、數列的極限:

  粗略地說,就是當數列的項n無限增大時,數列的項無限趨向于A,這就是數列極限的描述性定義。記作:=A。如:

  2、函數的極限:

  當自變量x無限趨近于常數時,如果函數無限趨近于一個常數,就說當x趨近于時,函數的極限是,記作

  三、導數的概念

  1、在處的導數。

  2、在的導數。

  3、函數在點處的導數的幾何意義:

  函數在點處的導數是曲線在處的切線的斜率,

  即k=,相應的切線方程是

  注:函數的導函數在時的函數值,就是在處的.導數。

  例、若=2,則=()A—1B—2C1D

  四、導數的綜合運用

  (一)曲線的切線

  函數y=f(x)在點處的導數,就是曲線y=(x)在點處的切線的斜率。由此,可以利用導數求曲線的切線方程。具體求法分兩步:

  (1)求出函數y=f(x)在點處的導數,即曲線y=f(x)在點處的切線的斜率k=

  (2)在已知切點坐標和切線斜率的條件下,求得切線方程為x。

  高中數學知識點總結 2

  一、平面的基本性質與推論

  1、平面的基本性質:

  公理1如果一條直線的兩點在一個平面內,那么這條直線在這個平面內;

  公理2過不在一條直線上的三點,有且只有一個平面;

  公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

  2、空間點、直線、平面之間的位置關系:

  直線與直線—平行、相交、異面;

  直線與平面—平行、相交、直線屬于該平面(線在面內,最易忽視);

  平面與平面—平行、相交。

  3、異面直線:

  平面外一點A與平面一點B的連線和平面內不經過點B的直線是異面直線(判定);

  所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);

  兩條直線不是異面直線,則兩條直線平行或相交(反證);

  異面直線不同在任何一個平面內。

  求異面直線所成的角:平移法,把異面問題轉化為相交直線的夾角

  二、空間中的平行關系

  1、直線與平面平行(核心)

  定義:直線和平面沒有公共點

  判定:不在一個平面內的一條直線和平面內的一條直線平行,則該直線平行于此平面(由線線平行得出)

  性質:一條直線和一個平面平行,經過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行

  2、平面與平面平行

  定義:兩個平面沒有公共點

  判定:一個平面內有兩條相交直線平行于另一個平面,則這兩個平面平行

  性質:兩個平面平行,則其中一個平面內的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。

  3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線

  三、空間中的垂直關系

  1、直線與平面垂直

  定義:直線與平面內任意一條直線都垂直

  判定:如果一條直線與一個平面內的兩條相交的直線都垂直,則該直線與此平面垂直

  性質:垂直于同一直線的兩平面平行

  推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面

  直線和平面所成的`角:【0,90】度,平面內的一條斜線和它在平面內的射影說成的銳角,特別規定垂直90度,在平面內或者平行0度

  2、平面與平面垂直

  定義:兩個平面所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內分別作垂直于棱的兩條射線所成的角)

  判定:一個平面過另一個平面的垂線,則這兩個平面垂直

  性質:兩個平面垂直,則一個平面內垂直于交線的直線與另一個平面垂直

  高中數學知識點總結 3

  考點一、映射的概念

  1.了解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多

  2.映射:設A和B是兩個非空集合,如果按照某種對應關系f,對于集合A中的任意一個元素x,在集合B中都存在的一個元素y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應,簡稱“對一”的對應.包括:一對一多對一

  考點二、函數的概念

  1.函數:設A和B是兩個非空的數集,如果按照某種確定的'對應關系f,對于集合A中的任意一個數x,在集合B中都存在確定的數y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個函數.記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數的定義域;與x的值相對應的y的值函數值,函數值的集合叫做函數的值域.函數是特殊的映射,是非空數集A到非空數集B的映射.

  2.函數的三要素:定義域、值域、對應關系.這是判斷兩個函數是否為同一函數的依據.

  3.區間的概念:設a,bR,且a

  ①(a,b)={xa

  ⑤(a,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={

  考點三、函數的表示方法

  1.函數的三種表示方法列表法圖象法解析法

  2.分段函數:定義域的不同部分,有不同的對應法則的函數.注意兩點:①分段函數是一個函數,不要誤認為是幾個函數.②分段函數的定義域是各段定義域的并集,值域是各段值域的并集.

  考點四、求定義域的幾種情況

  ①若f(x)是整式,則函數的定義域是實數集R;

  ②若f(x)是分式,則函數的定義域是使分母不等于0的實數集;

  ③若f(x)是二次根式,則函數的定義域是使根號內的式子大于或等于0的實數集合;

  ④若f(x)是對數函數,真數應大于零.

  ⑤.因為零的零次冪沒有意義,所以底數和指數不能同時為零.

  ⑥若f(x)是由幾個部分的數學式子構成的,則函數的定義域是使各部分式子都有意義的實數集合;

  ⑦若f(x)是由實際問題抽象出來的函數,則函數的定義域應符合實際問題

  高中數學知識點總結 4

  有界性

  設函數f(x)在區間X上有定義,如果存在M>0,對于一切屬于區間X上的x,恒有|f(x)|≤M,則稱f(x)在區間X上有界,否則稱f(x)在區間上無界.

  單調性

  設函數f(x)的定義域為D,區間I包含于D.如果對于區間上任意兩點x1及x2,當x1f(x2),則稱函數f(x)在區間I上是單調遞減的單調遞增和單調遞減的函數統稱為單調函數.

  奇偶性

  設為一個實變量實值函數,若有f(—x)=—f(x),則f(x)為奇函數.

  幾何上,一個奇函數關于原點對稱,亦即其圖像在繞原點做180度旋轉后不會改變.

  奇函數的.例子有x、sin(x)、sinh(x)和erf(x).

  設f(x)為一實變量實值函數,若有f(x)=f(—x),則f(x)為偶函數.

  幾何上,一個偶函數關于y軸對稱,亦即其圖在對y軸映射后不會改變.

  偶函數的例子有|x|、x2、cos(x)和cosh(x).

  偶函數不可能是個雙射映射.

  連續性

  在數學中,連續是函數的一種屬性.直觀上來說,連續的函數就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數.如果輸入值的某種微小的變化會產生輸出值的一個突然的跳躍甚至無法定義,則這個函數被稱為是不連續的函數(或者說具有不連續性).

  高中數學知識點總結 5

  (一)導數第一定義

  設函數 y = f(x) 在點 x0 的某個領域內有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內 ) 時,相應地函數取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數 y = f(x) 在點 x0 處可導,并稱這個極限值為函數 y = f(x) 在點 x0 處的導數記為 f(x0) ,即導數第一定義

  (二)導數第二定義

  設函數 y = f(x) 在點 x0 的某個領域內有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時,相應地函數變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數 y = f(x) 在點 x0 處可導,并稱這個極限值為函數 y = f(x) 在點 x0 處的導數記為 f(x0) ,即 導數第二定義

  (三)導函數與導數

  如果函數 y = f(x) 在開區間 I 內每一點都可導,就稱函數f(x)在區間 I 內可導。這時函數 y = f(x) 對于區間 I 內的每一個確定的. x 值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數 y = f(x) 的導函數,記作 y, f(x), dy/dx, df(x)/dx。導函數簡稱導數。

  (四)單調性及其應用

  1.利用導數研究多項式函數單調性的一般步驟

  (1)求f(x)

  (2)確定f(x)在(a,b)內符號 (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數

  2.用導數求多項式函數單調區間的一般步驟

  (1)求f(x)

  (2)f(x)>0的解集與定義域的交集的對應區間為增區間; f(x)<0的解集與定義域的交集的對應區間為減區間

  學習了導數基礎知識點,接下來可以學習高二數學中涉及到的導數應用的部分。

  高中數學知識點總結 6

  一、直線與方程高考考試內容及考試要求:

  考試內容:

  1.直線的傾斜角和斜率;直線方程的點斜式和兩點式;直線方程的一般式;

  2.兩條直線平行與垂直的條件;兩條直線的交角;點到直線的距離;

  考試要求:

  1.理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據條件熟練地求出直線方程;

  2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據直線的方程判斷兩條直線的位置關系;

  二、直線與方程

  課標要求:

  1.在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素;

  2.理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;

  3.根據確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系;

  4.會用代數的方法解決直線的有關問題,包括求兩直線的交點,判斷兩條直線的位置關系,求兩點間的距離、點到直線的距離以及兩條平行線之間的距離等。

  要點精講:

  1.直線的傾斜角:當直線l與x軸相交時,取x軸作為基準,x軸正向與直線l向上方向之間所成的角α叫做直線l的`傾斜角。特別地,當直線l與x軸平行或重合時,規定α=0°.

  傾斜角α的取值范圍:0°≤α<180°.當直線l與x軸垂直時,α=90°.

  2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k=tanα

  (1)當直線l與x軸平行或重合時,α=0°,k=tan0°=0;

  (2)當直線l與x軸垂直時,α=90°,k不存在。

  由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。

  3.過兩點p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:

  (若x1=x2,則直線p1p2的斜率不存在,此時直線的傾斜角為90°)。

  高中數學知識點總結 7

  一、高中數列基本公式:

  1、一般數列的通項an與前n項和Sn的關系:an=

  2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關于n的一次式;當d=0時,an是一個常數。

  3、等差數列的前n項和公式:Sn=

  Sn=

  Sn=

  當d≠0時,Sn是關于n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關于n的正比例式。

  4、等比數列的通項公式: an= a1qn-1an= akqn-k

  (其中a1為首項、ak為已知的第k項,an≠0)

  5、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關于n的正比例式);

  當q≠1時,Sn=

  Sn=

  二、高中數學中有關等差、等比數列的結論

  1、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數列。

  2、等差數列{an}中,若m+n=p+q,則

  3、等比數列{an}中,若m+n=p+q,則

  4、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數列。

  5、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。

  6、兩個等比數列{an}與{bn}的積、商、倒數組成的數列仍為等比數列。

  7、等差數列{an}的'任意等距離的項構成的數列仍為等差數列。

  8、等比數列{an}的任意等距離的項構成的數列仍為等比數列。

  9、三個數成等差數列的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d

  10、三個數成等比數列的設法:a/q,a,aq;

  四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什么?)

  高中數學知識點總結 8

  一、集合有關概念

  1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

  2、集合的中元素的三個特性:

  1)元素的確定性;

  2)元素的互異性;

  3)元素的無序性。

  說明:

  (1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

  (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

  (3)集合中的元素是平等的',沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}

  1)用拉丁字母表示集合:A={我校的籃球隊員}B={12345}。

  2)集合的表示方法:列舉法與描述法。

  注意啊:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集N_或N+整數集Z有理數集Q實數集R

  關于“屬于”的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A。

  列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

  ①語言描述法:例:{不是直角三角形的三角形}

  ②數學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

  4、集合的分類:

  1)有限集含有有限個元素的集合。

  2)無限集含有無限個元素的集合。

  3)空集不含任何元素的集合例:{x|x2=—5}。

  二、集合間的基本關系

  1、“包含”關系子集

  注意:有兩種可能

  (1)A是B的一部分,;

  (2)A與B是同一集合。

  反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。

  2、“相等”關系(5≥5,且5≤5,則5=5)

  實例:設A={x|x2—1=0}B={—11}“元素相同”

  結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B。

  ①任何一個集合是它本身的子集。AA

  ②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)

  ③如果ABBC那么AC

  ④如果AB同時BA那么A=B

  3、不含任何元素的集合叫做空集,記為Φ。

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的運算

  1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集。

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。

  2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。

  3、交集與并集的性質:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。

  4、全集與補集

  (1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  記作:CSA即CSA={x?x?S且x?A}。

  (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

  (3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。

  高中數學知識點總結 9

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

  一、求動點的軌跡方程的基本步驟。

  1、建立適當的坐標系,設出動點M的坐標;

  2、寫出點M的集合;

  3、列出方程=0;

  4、化簡方程為最簡形式;

  5、檢驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。

  1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

  3、相關點法:用動點Q的坐標x,y表示相關點P的`坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

  4、參數法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數t的關系,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。

  5、交軌法:將兩動曲線方程中的參數消去,得到不含參數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  求動點軌跡方程的一般步驟:

  ①建系——建立適當的坐標系;

  ②設點——設軌跡上的任一點P(x,y);

  ③列式——列出動點p所滿足的關系式;

  ④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;

  ⑤證明——證明所求方程即為符合條件的動點軌跡方程。

  高中數學知識點總結 10

  1、命題的四種形式及其相互關系是什么?

  (互為逆否關系的命題是等價命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?

  (一對一,多對一,允許B中有元素無原象。)

  3、函數的三要素是什么?如何比較兩個函數是否相同?

  (定義域、對應法則、值域)

  4、反函數存在的條件是什么?

  (一一對應函數)

  求反函數的`步驟掌握了嗎?

  (①反解x;②互換x、y;③注明定義域)

  5、反函數的性質有哪些?

  ①互為反函數的圖象關于直線y=x對稱;

  ②保存了原來函數的單調性、奇函數性;

  6、函數f(x)具有奇偶性的必要(非充分)條件是什么?

  (f(x)定義域關于原點對稱)

  高中數學知識點總結 11

  1.萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

  2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

  3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

  向量公式:

  1.單位向量:單位向量a0=向量a/|向量a|

  2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(x平方+y平方)

  3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]

  4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(x1平方+y1平方)_根號(x2平方+y2平方)

  5.空間向量:同上推論(提示:向量a={x,y,z})

  6.充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2

  7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方

  高中數學知識點總結 12

  ★高中數學導數知識點

  一、早期導數概念————特殊的形式大約在1629年法國數學家費馬研究了作曲線的切線和求函數極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構造了差分f(A+E)—f(A),發現的因子E就是我們所說的導數f(A)。

  二、17世紀————廣泛使用的“流數術”17世紀生產力的發展推動了自然科學和技術的發展在前人創造性研究的基礎上大數學家牛頓、萊布尼茨等從不同的角度開始系統地研究微積分。牛頓的微積分理論被稱為“流數術”他稱變量為流量稱變量的變化率為流數相當于我們所說的導數。牛頓的有關“流數術”的主要著作是《求曲邊形面積》、《運用無窮多項方程的計算法》和《流數術和無窮級數》流數理論的實質概括為他的重點在于一個變量的函數而不在于多變量的方程在于自變量的變化與函數的變化的比的構成最在于決定這個比當變化趨于零時的極限。

  三、19世紀導數————逐漸成熟的理論1750年達朗貝爾在為法國科學家院出版的《百科全書》第五版寫的“微分”條目中提出了關于導數的一種觀點可以用現代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導數如果函數y=f(x)在變量x的兩個給定的.界限之間保持連續并且我們為這樣的變量指定一個包含在這兩個不同界限之間的值那么是使變量得到一個無窮小增量。19世紀60年代以后魏爾斯特拉斯創造了ε—δ語言對微積分中出現的各種類型的極限重加表達導數的定義也就獲得了今天常見的形式。

  四、實無限將異軍突起微積分第二輪初等化或成為可能微積分學理論基礎大體可以分為兩個部分。一個是實無限理論即無限是一個具體的東西一種真實的存在另一種是潛無限指一種意識形態上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實無限用了150年后來極限論就是現在所使用的。光是電磁波還是粒子是一個物理學長期爭論的問題后來由波粒二象性來統一。微積分無論是用現代極限論還是150年前的理論都不是最好的手段。

  ★高中數學導數要點

  1、求函數的單調性:

  利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,

  (1)如果恒f(x)0,則函數yf(x)在區間(a,b)上為增函數;

  (2)如果恒f(x)0,則函數yf(x)在區間(a,b)上為減函數;

  (3)如果恒f(x)0,則函數yf(x)在區間(a,b)上為常數函數。

  利用導數求函數單調性的基本步驟:

  ①求函數yf(x)的定義域;

  ②求導數f(x);

  ③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;

  ④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。

  反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,

  (1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);

  (2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區間);

  (3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恒成立。

  2、求函數的極值:

  設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。

  可導函數的極值,可通過研究函數的單調性求得,基本步驟是:

  (1)確定函數f(x)的定義域;

  (2)求導數f(x);

  (3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區間,并列表:x變化時,f(x)和f(x)值的

  變化情況:

  (4)檢查f(x)的符號并由表格判斷極值。

  3、求函數的最大值與最小值:

  如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的最大值。函數在定義域內的極值不一定唯一,但在定義域內的最值是唯一的。

  求函數f(x)在區間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;

  (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的最大值與最小值。

  4、解決不等式的有關問題:

  (1)不等式恒成立問題(絕對不等式問題)可考慮值域。

  f(x)(xA)的值域是[a,b]時,

  不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)時,

  不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

  (2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。

  5、導數在實際生活中的應用:

  實際生活求解最大(小)值問題,通常都可轉化為函數的最值。在利用導數來求函數最值時,一定要注意,極值點唯一的單峰函數,極值點就是最值點,在解題時要加以說明。

  高中數學知識點總結 13

  簡單隨機抽樣

  (1)總體和樣本

  ①在統計學中 , 把研究對象的全體叫做總體。

  ②把每個研究對象叫做個體。

  ③把總體中個體的總數叫做總體容量。

  ④為了研究總體 的有關性質,一般從總體中隨機抽取一部分: x1,x2 , …,xx 研究,我們稱它為樣本。其中個體的個數稱為樣本容量。

  (2)簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的.基礎。通常只是在總體單位之間差異程度較小和數目較少時,才采用這種方法。

  (3)簡單隨機抽樣常用的方法:

  ①抽簽法;

  ②隨機數表法;

  ③計算機模擬法;

  ③使用統計軟件直接抽取。

  在簡單隨機抽樣的樣本容量設計中,主要考慮:

  ①總體變異情況;

  ②允許誤差范圍;

  ③概率保證程度。

  (4)抽簽法:

  ①給調查對象群體中的每一個對象編號;

  ②準備抽簽的工具,實施抽簽;

  ③對樣本中的每一個個體進行測量或調查

  (5)隨機數表法

  高中數學知識點總結 14

  一、集合、簡易邏輯

  1、集合;

  2、子集;

  3、補集;

  4、交集;

  5、并集;

  6、邏輯連結詞;

  7、四種命題;

  8、充要條件。

  二、函數

  1、映射;

  2、函數;

  3、函數的單調性;

  4、反函數;

  5、互為反函數的函數圖象間的關系;

  6、指數概念的擴充;

  7、有理指數冪的運算;

  8、指數函數;

  9、對數;

  10、對數的運算性質;

  11、對數函數。

  12、函數的應用舉例。

  三、數列(12課時,5個)

  1、數列;

  2、等差數列及其通項公式;

  3、等差數列前n項和公式;

  4、等比數列及其通頂公式;

  5、等比數列前n項和公式。

  四、三角函數

  1、角的概念的推廣;

  2、弧度制;

  3、任意角的三角函數;

  4、單位圓中的三角函數線;

  5、同角三角函數的基本關系式;

  6、正弦、余弦的誘導公式;

  7、兩角和與差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函數、余弦函數的圖象和性質;

  10、周期函數;

  11、函數的奇偶性;

  12、函數的圖象;

  13、正切函數的圖象和性質;

  14、已知三角函數值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法舉例。

  五、平面向量

  1、向量;

  2、向量的加法與減法;

  3、實數與向量的積;

  4、平面向量的坐標表示;

  5、線段的定比分點;

  6、平面向量的數量積;

  7、平面兩點間的距離;

  8、平移。

  六、不等式

  1、不等式;

  2、不等式的基本性質;

  3、不等式的證明;

  4、不等式的解法;

  5、含絕對值的不等式。

  七、直線和圓的方程

  1、直線的傾斜角和斜率;

  2、直線方程的點斜式和兩點式;

  3、直線方程的一般式;

  4、兩條直線平行與垂直的條件;

  5、兩條直線的交角;

  6、點到直線的距離;

  7、用二元一次不等式表示平面區域;

  8、簡單線性規劃問題;

  9、曲線與方程的概念;

  10、由已知條件列出曲線方程;

  11、圓的標準方程和一般方程;

  12、圓的參數方程。

  八、圓錐曲線

  1、橢圓及其標準方程;

  2、橢圓的簡單幾何性質;

  3、橢圓的.參數方程;

  4、雙曲線及其標準方程;

  5、雙曲線的簡單幾何性質;

  6、拋物線及其標準方程;

  7、拋物線的簡單幾何性質。

  九、直線、平面、簡單何體

  1、平面及基本性質;

  2、平面圖形直觀圖的畫法;

  3、平面直線;

  4、直線和平面平行的判定與性質;

  5、直線和平面垂直的判定與性質;

  6、三垂線定理及其逆定理;

  7、兩個平面的位置關系;

  8、空間向量及其加法、減法與數乘;

  9、空間向量的坐標表示;

  10、空間向量的數量積;

  11、直線的方向向量;

  12、異面直線所成的角;

  13、異面直線的公垂線;

  14、異面直線的距離;

  15、直線和平面垂直的性質;

  16、平面的法向量;

  17、點到平面的距離;

  18、直線和平面所成的角;

  19、向量在平面內的射影;

  20、平面與平面平行的性質;

  21、平行平面間的距離;

  22、二面角及其平面角;

  23、兩個平面垂直的判定和性質;

  24、多面體;

  25、棱柱;

  26、棱錐;

  27、正多面體;

  28、球。

  十、排列、組合、二項式定理

  1、分類計數原理與分步計數原理;

  2、排列;

  3、排列數公式;

  4、組合;

  5、組合數公式;

  6、組合數的兩個性質;

  7、二項式定理;

  8、二項展開式的性質。

  十一、概率

  1、隨機事件的概率;

  2、等可能事件的概率;

  3、互斥事件有一個發生的概率;

  4、相互獨立事件同時發生的概率;

  5、獨立重復試驗。

  高中數學知識點總結 15

  1、必修課程由5個模塊組成:

  必修1:集合,函數概念與基本初等函數(指數函數,冪函數,對數函數)

  必修2:立體幾何初步、平面解析幾何初步。

  必修3:算法初步、統計、概率。

  必修4:基本初等函數(三角函數)、平面向量、三角恒等變換。

  必修5:解三角形、數列、不等式。

  以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。

  選修課程分為4個系列:

  系列1:2個模塊

  選修1—1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。

  選修1—2:統計案例、推理與證明、數系的擴充與復數、框圖

  系列2:3個模塊

  選修2—1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何

  選修2—2:導數及其應用、推理與證明、數系的擴充與復數

  選修2—3:計數原理、隨機變量及其分布列、統計案例

  選修4—1:幾何證明選講

  選修4—4:坐標系與參數方程

  選修4—5:不等式選講

  2、重難點及其考點:

  重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數

  難點:函數,圓錐曲線

  高考相關考點:

  1、集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡易邏輯、充要條件

  2、函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數函數、對數函數、函數的應用

  3、數列:數列的有關概念、等差數列、等比數列、數列求通項、求和

  4、三角函數:有關概念、同角關系與誘導公式、和差倍半公式、求值、化簡、證明、三角函數的圖像及其性質、應用

  5、平面向量:初等運算、坐標運算、數量積及其應用

  6、不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經常出現在大題的選做題里)、不等式的應用

  7、直線與圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系

  8、圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用

  9、直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

  10、排列、組合和概率:排列、組合應用題、二項式定理及其應用

  11、概率與統計:概率、分布列、期望、方差、抽樣、正態分布

  12、導數:導數的概念、求導、導數的應用

  13、復數:復數的概念與運算

  高中數學學習要注意的方法

  1、用心感受數學,欣賞數學,掌握數學思想。有位數學家曾說過:數學是用最小的空間集中了的理想。

  2、要重視數學概念的理解。高一數學與初中數學的區別是概念多并且較抽象,學起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價的表達方式。例如,為什么函數y=f(x)與y=f—1(x)的圖象關于直線y=x對稱,而y=f(x)與x=f—1(y)卻有相同的圖象;又如,為什么當f(x—1)=f(1—x)時,函數y=f(x)的圖象關于y軸對稱,而y=f(x—1)與y=f(1—x)的圖象卻關于直線x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。

  3、對數學學習應抱著二個詞――“嚴謹,創新”,所謂嚴謹,就是在平時訓練的時候,不能一絲馬虎,是對就是對,錯了就一定要承認,要找原因,要改正,萬不可以抱著“好像是對的”的心態,蒙混過關。至于創新呢,要求就高一點了,要求在你會解決此問題的情況下,你還會不會用另一種更簡單,更有效的方法,這就需要扎實的基本功。平時,我們看到一些人,做題時從不用常規方法,總愛自己創造一些方法以“偏方”解題,雖然有時候也能讓他撞上一些好的方法,但我認為是不可取的。因為你首先必須學會用常規的方法,在此基礎上你才能創新,你的創新才有意義,而那些總是片面“追求”新方法的人,他們的思維有如空中樓閣,必然是曇花一現。當然我們要有創新意識,但是,創新是有條件的,必須有扎實的基礎,因此我想勸一下那些基礎不牢,而平時總愛用“偏方”的同學們,該是清醒一下的時候了,千萬不要繼續鉆那可憐的牛角尖啊!

  4、建立良好的學習數學習慣,習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。

  5、多聽、多作、多想、多問:此“四多”乃培養數學能力的要訣,“聽”就是在“學”,作是“練習”(作課本上的習題或其它問題),也就是把您所學的,應用到解決問題上。“聽”與“作”難免會碰到疑難,那就要靠“想”的功夫去打通它,假如還想不通,解不來就要“問”――問同學、問老師或參考書,務必將疑難解決為止。這就是所謂的`學問:既學又問。

  6、要有毅力、要有恒心:基本上要有一個認識:數學能力乃是長期努力累積的結果,而不是一朝一夕之功所能達到的。您可能花一天或一個晚上的功夫把某課文背得滾瓜爛熟,第二天考背誦時對答如流而獲高分,也有可能花了一兩個禮拜的時間拼命學數學,但到頭來數學可能還考不好,這時候您可不能氣餒,也不必為花掉的時間惋惜。

  高中數學復習的五大要點分析

  一、端正態度,切忌浮躁,忌急于求成

  在第一輪復習的過程中,心浮氣躁是一個非常普遍的現象。主要表現為平時復習覺得沒有問題,題目也能做,但是到了考試時就是拿不了高分!這主要是因為:

  (1)對復習的知識點缺乏系統的理解,解題時缺乏思維層次結構。第一輪復習著重對基礎知識點的挖掘,數學老師一定都會反復強調基礎的重要性。如果不重視對知識點的系統化分析,不能構成一個整體的知識網絡構架,自然在解題時就不能擁有整體的構思,也不能深入理解高考典型例題的思維方法。

  (2)復習的時候心不靜。心不靜就會導致思維不清晰,而思維不清晰就會促使復習沒有效率。建議大家在開始一個學科的復習之前,先靜下心來認真想一想接下來需要復習哪一塊兒,需要做多少事情,然后認真去做,同時需要很高的注意力,只有這樣才會有很好的效果。

  (3)在第一輪復習階段,學習的重心應該轉移到基礎復習上來。

  因此,建議廣大同學在一輪復習的時候千萬不要急于求成,一定要靜下心來,認真的揣摩每個知識點,弄清每一個原理。只有這樣,一輪復習才能顯出成效。

  二、注重教材、注重基礎,忌盲目做題

  要把書本中的常規題型做好,所謂做好就是要用最少的時間把題目做對。部分同學在第一輪復習時對基礎題不予以足夠的重視,認為題目看上去會做就可以不加訓練,結果常在一些“不該錯的地方錯了”,最終把原因簡單的歸結為粗心,從而忽視了對基本概念的掌握,對基本結論和公式的記憶及基本計算的訓練和常規方法的積累,造成了實際成績與心理感覺的偏差。

  可見,數學的基本概念、定義、公式,數學知識點的聯系,基本的數學解題思路與方法,是第一輪復習的重中之重。不妨以既是重點也是難點的函數部分為例,就必須掌握函數的概念,建立函數關系式,掌握定義域、值域與最值、奇偶性、單調性、周期性、對稱性等性質,學會利用圖像即數形結合。

  每個同學在數學學習上遇到的問題有共同點,更有不同點。在復習課上,老師只能針對性去解決共同點,而同學們自己的個別問題則需要通過自己的思考,與同學們的討論,并向老師提問來解決問題,我們提倡同學多問老師,要敢于問。每個同學必須了解自己掌握了什么,還有哪些問題沒有解決,要明確只有把漏洞一一補上才能提高。復習的過程,實質就是解決問題的過程,問題解決了,復習的效果就實現了。同時,也請同學們注意:在你問問題之前先經過自己思考,不要把不經過思考的問題就直接去問,因為這并不能起到更大作用。

  高三的復習一定是有計劃、有目標的,所以千萬不要盲目做題。第一輪復習非常具有針對性,對于所有知識點的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡單做題是達不到一輪復習應該具有的效果。而且盲目做題沒有針對性,更不會有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對知識點運用方法的總結。

  三、在平時做題中要養成良好的解題習慣,忌不思

  1、樹立信心,養成良好的運算習慣。部分同學平時學習過程中自信心不足,做作業時免不了互相對答案,也不認真找出錯誤原因并加以改正。“會而不對”是高三數學學習的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這就是一種非常不好的習慣,必須在第一輪復習中逐步克服,否則,后患無窮。可結合平時解題中存在的具體問題,逐題找出原因,看其是行為習慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時作些記錄,也就是錯題本,每位同學必備的,以便以后查詢。

  2、做好解題后的開拓引申,培養一題多解和舉一反三的能力。解題能力的培養可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對解題方法的開拓引申,即一道數學題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。

  考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對題目做開拓引申,引申出新題和新解法,有利于培養同學們的發散思維,激發創造精神,提高解題能力:

  (1)把題目條件開拓引申。

  ①把特殊條件一般化;

  ②把一般條件特殊化;

  ③把特殊條件和一般條件交替變化。

  (2)把題目結論開拓引申。

  (3)把題型開拓引申,同一個題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。

  3、提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡捷;二是對常規解法的掌握是否達到高度的熟練程度。

  四、學會總結、歸納,訓練到位,忌題量不足

  我在暑期上課的時候發現,很多同學都是一看到題目就開始做題,這也是一輪復習應該避免的地方。做題如果不注重思路的分析,知識點的運用,效果可想而知。因此建議同學們在做題前要把老師上課時復習的知識再回顧一下,梳理知識體系,回顧各個知識點,對所學的知識結構要有一個完整清楚的認識,認真分析題目考查的知識,思想,以及方法,還要學會總結歸納不留下任何知識的盲點,在一輪復習中要注意對各個知識點的細化。這個過程不需要很長的時間,而且到了后續階段會越來越熟練。因此,養成良好的做題習慣,有助于訓練自己的解題思維,提高自己的解題能力。

  實踐出真知,充足的題量是把理論轉化為能力的一種保障,在足夠的題目的練習下不僅可以更扎實的掌握知識點,還可以更深入的了解知識點,避免出現“會而不對、對而不全”的現象。由于高考依然是以做題為主,所以解題能力是高考分數的一個直接反映,尤其是數學試題。而解題能力不是三兩道題就能提升的,而是要大量的反復的訓練、認真細致的推敲才會有較大的提升。有句話說的好,“量變導致質變”,因此,同學們在每章復習的時候,一定要做足夠的題,才能夠充分的理解這一章的內容,才能夠做到對這一章知識點的熟練運用。

  但是,大量訓練絕對不是題海戰術。因為針對每章節做題都有目標,同時做題訓練都需要不斷的總結,既要橫向總結,也要縱向深入。只要在每章節做題做到一定程度的時候都能感覺到這一章的知識點有哪些,典型題型有哪些,方法和技巧有哪些,換句話說,如果隨機抽取一些近幾年關于這一章的高考題都會做,那我認為就可以了。

  五、解析幾何

  這部分內容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準確度。

  六、壓軸題

  同學們在最后的備考復習中,還應該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。

  高考數學直線方程知識點:什么是直線方程

  從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯立,作為它們相交所得直線的方程。

【高中數學知識點總結】相關文章:

高中數學知識點的總結12-19

高中數學幾何知識點總結05-25

高中數學全部知識點總結02-20

高中數學導數知識點總結02-11

高中數學知識點總結05-15

高中數學基本的知識點總結09-28

高中數學知識點的總結03-13

高中數學知識點總結09-22

高中數學函數部分知識點總結06-30

高中數學的基本知識點總結07-19

中文无码日韩欧免费视频手机,久久人妻一区二区三区免费,国产精品大屁股美女白浆网站,国产久re热视频精品
中文字幕永久免费视频最新 | 中文字幕免费AV | 日韩精品一区二区三区中文不卡 | 亚洲永久字幕精品免费文字 | 在线观看精品国产免费 | 亚洲人成禁漫在线观看 |