- 相關推薦
高中概率數學知識點 高中數學概率總結
總結是指社會團體、企業單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書面材料,它能夠給人努力工作的動力,不妨坐下來好好寫寫總結吧。總結怎么寫才是正確的呢?以下是小編整理的高中概率數學知識點 高中數學概率總結,供大家參考借鑒,希望可以幫助到有需要的朋友。
高中概率數學知識點 高中數學概率總結1
一.算法,概率和統計
1.算法初步(約12課時)
(1)算法的含義、程序框圖
①通過對解決具體問題過程與步驟的分析(如,二元一次方程組求解等問題),體會算法的思想,了解算法的含義。
②通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中(如,三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結構:順序、條件分支、循環。
(2)基本算法語句
經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句——輸入語句、輸出語句、賦值語句、條件語句、循環語句,進一步體會算法的基本思想。
(3)通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。
3.概率(約8課時)
(1)在具體情境中,了解隨機事件發生的不確定性和頻率的穩定性,進一步了解概率的意義以及頻率與概率的區別。
(2)通過實例,了解兩個互斥事件的概率加法公式。
(3)通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。
(4)了解隨機數的意義,能運用模擬方法(包括計算器產生隨機數來進行模擬)估計概率,初步體會幾何概型的意義(參見例3)。
(5)通過閱讀材料,了解人類認識隨機現象的過程。
2.統計(約16課時)
(1)隨機抽樣
①能從現實生活或其他學科中提出具有一定價值的統計問題。
②結合具體的實際問題情境,理解隨機抽樣的必要性和重要性。
③在參與解決統計問題的過程中,學會用簡單隨機抽樣方法從總體中抽取樣本;通過對實例的分析,了解分層抽樣和系統抽樣方法。
④能通過試驗、查閱資料、設計調查問卷等方法收集數據。
(2)用樣本估計總體
①通過實例體會分布的意義和作用,在表示樣本數據的過程中,學會列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會他們各自的特點。
②通過實例理解樣本數據標準差的意義和作用,學會計算數據標準差。
③能根據實際問題的需求合理地選取樣本,從樣本數據中提取基本的數字特征(如平均數、標準差),并作出合理的解釋。
④在解決統計問題的過程中,進一步體會用樣本估計總體的思想,會用樣本的頻率分布估計總體分布,會用樣本的基本數字特征估計總體的基本數字特征;初步體會樣本頻率分布和數字特征的隨機性。
⑤會用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題;能通過對數據的分析為合理的決策提供一些依據,認識統計的作用,體會統計思維與確定性思維的差異。
⑥形成對數據處理過程進行初步評價的意識。
(3)變量的相關性
①通過收集現實問題中兩個有關聯變量的數據作出散點圖,并利用散點圖直觀認識變量間的相關關系。
②經歷用不同估算方法描述兩個變量線性相關的過程。知道最小二乘法的思想,能根據給出的線性回歸方程系數公式建立線性回歸方程。
二.常用邏輯用語
1。命題及其關系
①了解命題的逆命題、否命題與逆否命題。
②理解必要條件、充分條件與充要條件的意義,會分析四種命題的相互關系。
(2)簡單的邏輯聯結詞
通過數學實例,了解"或"、"且"、"非"的含義。
(3)全稱量詞與存在量詞
①通過生活和數學中的豐富實例,理解全稱量詞與存在量詞的意義。
②能正確地對含有一個量詞的命題進行否定。
3.導數及其應用(約16課時)
(1)導數概念及其幾何意義
①通過對大量實例的分析,經歷由平均變化率過渡到瞬時變化率的過程,了解導數概念的實際背景,知道瞬時變化率就是導數,體會導數的思想及其內涵(參見例2、例3)。
②通過函數圖像直觀地理解導數的幾何意義。
(2)導數的運算
①能根據導數定義,求函數y=c,y=x,y=x2,y=1/x的導數。
②能利用給出的基本初等函數的導數公式和導數的四則運算法則求簡單函數的導數。
③會使用導數公式表。
(3)導數在研究函數中的應用
①結合實例,借助幾何直觀探索并了解函數的單調性與導數的關系(參見例4);能利用導數研究函數的單調性,會求不超過三次的多項式函數的單調區間。
②結合函數的圖像,了解函數在某點取得極值的必要條件和充分條件;會用導數求不超過三次的多項式函數的極大值、極小值,以及在給定區間上不超過三次的多項式函數的最大值、最小值。2.圓錐曲線與方程(約12課時)
(1)了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現實世界和解決實際問題中的作用。
(2)經歷從具體情境中抽象出橢圓模型的.過程(參見例1),掌握橢圓的定義、標準方程及簡單幾何性質。
(3)了解拋物線、雙曲線的定義、幾何圖形和標準方程,知道它們的簡單幾何性質。
(4)通過圓錐曲線與方程的學習,進一步體會數形結合的思想。
(5)了解圓錐曲線的簡單應用。
三.統計案例(約14課時)
通過典型案例,學習下列一些常見的統計方法,并能初步應用這些方法解決一些實際問題。
①通過對典型案例(如"肺癌與吸煙有關嗎"等)的探究,了解獨立性檢驗(只要求2×2列聯表)的基本思想、方法及初步應用。
②通過對典型案例(如"質量控制"、"新藥是否有效"等)的探究,了解實際推斷原理和假設檢驗的基本思想、方法及初步應用(參見例1)。
③通過對典型案例(如"昆蟲分類"等)的探究,了解聚類分析的基本思想、方法及初步應用。
④通過對典型案例(如"人的體重與身高的關系"等)的探究,進一步了解回歸的基本思想、方法及初步應用。
2.推理與證明(約10課時)
(1)合情推理與演繹推理
①結合已學過的數學實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的推理,體會并認識合情推理在數學發現中的作用(參見例2、例3)。
②結合已學過的數學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本方法,并能運用它們進行一些簡單推理。
③通過具體實例,了解合情推理和演繹推理之間的聯系和差異。
(2)直接證明與間接證明
①結合已經學過的數學實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。
②結合已經學過的數學實例,了解間接證明的一種基本方法——反證法;了解反證法的思考過程、特點。
高中概率數學知識點 高中數學概率總結2
概率
3.1.1 —3.1.2隨機事件的概率及概率的意義
1、基本概念:
(1)必然事件:在條件S下,一定會發生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統稱為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發生也可能不發生的事件,叫相對于條件S的隨機事件;
(5)頻數與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現,稱n次試驗中事件A出現的次數nA為事件A出現的頻數;稱事件A出現的比例fn(A)=為事件A出現的概率:對于給定的隨機事件A,如果隨著試驗次數的增加,事件A發生的頻率fn(A)穩定在某個常數上,把這個常數記作P(A),稱為事件A的概率。
(6)頻率與概率的區別與聯系:隨機事件的頻率,指此事件發生的次數nA與試驗總次數n的比值,它具有一定的穩定性,總在某個常數附近擺動,且隨著試驗次數的不斷增多,這種擺動幅度越來越小。我們把這個常數叫做隨機事件的概率,概率從數量上反映了隨機事件發生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率
3.1.3概率的基本性質
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;
(4)當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性質:
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);
3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對立事件的區別與聯系,互斥事件是指事件A與事件B在一次試驗中不會同時發生,其具體包括三種不同的情形:(1)事件A發生且事件B不發生;(2)事件A不發生且事件B發生;(3)事件A與事件B同時不發生,而對立事件是指事件A與事件B有且僅有一個發生,其包括兩種情形;(1)事件A發生B不發生;(2)事件B發生事件A不發生,對立事件互斥事件的特殊情形。
3.2.1 —3.2.2古典概型及隨機數的產生
1、(1)古典概型的使用條件:試驗結果的.有限性和所有結果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事件數;
②求出事件A所包含的基本事件數,然后利用公式P(A)=
3.3.1—3.3.2幾何概型及均勻隨機數的產生
1、基本概念:
(1)幾何概率模型:如果每個事件發生的概率只與構成該事件區域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;
(2)幾何概型的概率公式:
P(A)=;
(3)幾何概型的特點:1)試驗中所有可能出現的結果(基本事件)有無限多個;2)每個基本事件出現的可能性相等。
如何細心地發掘概念和公式
很多同學對概念和公式不夠重視,這類問題反映在三個方面:一是,對概念的理解只是停留在文字表面,對概念的特殊情況重視不夠。例如,在代數式的概念(用字母或數字表示的式子是代數式)中,很多同學忽略了“單個字母或數字也是代數式”。
二是,對概念和公式一味的死記硬背,缺乏與實際題目的聯系。這樣就不能很好的將學到的知識點與解題聯系起來。三是,一部分同學不重視對數學公式的記憶。記憶是理解的基礎。如果你不能將公式爛熟于心,又怎能夠在題目中熟練應用呢?
我們的建議是:更細心一點(觀察特例),更深入一點(了解它在題目中的常見考點),更熟練一點(無論它以什么面目出現,我們都能夠應用自如)。
數學中的判定
判定多用于數學的證明概念,通過事物的本質屬性反映出的本質性質,以此作為依據推知下一步結論,這個行為叫做判定。
例如:兩組對邊分別平行的四邊形,叫做平行四邊形,這個作為已證明的定理,揭示了本質,可以說是“永遠成立”。
以此作為判定依據,這個依據叫判定定理,我發現一個四邊形的一組對邊平行且相等,那么可以斷定此四邊形就是平行四邊形,這個行為叫判定
【高中概率數學知識點 高中數學概率總結】相關文章:
高中概率知識點總結07-13
高中概率知識點總結05-14
初中數學概率的相關知識點大06-16
概率知識點總結實用06-02
概率統計總結08-28
頻率與概率總結06-01
《概率》說課稿11-07
初三數學概率教案10-20
高三數學的概率統計復習總結10-10
數學隨機概率教學計劃04-17